Серый чугун с пластинчатым графитом

Микроструктура серого чугуна с пластинчатым графитом

Рис. 1: Микроструктура серого чугуна с пластинчатым графитом, увеличение х 500

Серый чугун с пластинчатым графитом (flake graphite iron for casting) представляет собой железоуглеродистый сплав, легированный кремнием и марганцем, в котором в процессе кристаллизации углерод выделяется в отдельную фазу в виде пластинчатого графита.

Серый чугун, обладающий хорошими литейными свойствами, высокой циклической вязкостью, относительно высокой усталостной прочностью, малой чувствительностью к надрезам, низкой усадкой, высоким выходом годного, хорошей износостойкостью, обрабатываемостью, низкой себестоимостью производства, в настоящее время является самым распространенным сплавом для производства отливок.

Недостатки серого чугуна: низкая пластичность, стойкость при ударном приложении нагрузки, затруднительная свариваемость.

Физико-механические и технологические свойства отливок из серого чугуна с пластинчатым графитом определяются микроструктурой материала отливок, которая формируется в зависимости от химического состава чугуна и отдельных копонентов шихты; скорости кристаллизации и охлаждения отливок (формы, конструктивных особенностей и толщины стенок отливок; физических свойств материала литейных форм и стержней, их толщины; температуры заливки и т.д.); проведения процессов модифицирования, микролегирования и термической обработки.

Микроструктура серого чугуна слагается из металлической матрицы (основы) и внедренных в нее прямолинейных или искривленных (на подобие лепестков розы) пластинок графита (свободного углерода), который обладает низкой механической прочностью, при этом, чем больше включений графита, крупнее размеры его включений, более прямолинейна их форма, неравномерность распределения включений графита по сечению, тем ниже механические свойства чугуна.

Основные структурные составляющие матрицы:

  1. Феррит — твердый раствор углерода в α-железе, характеризуется низкой механической прочностью (σВ=25-30 кгс/мм2; σТ=12-30 кгс/мм2; δ=30-50%; ψ=60-85%; твердость 80-100 НВ). Образуется из аустенита при медленном охлаждении сплавов от температур аустенитной области. Температура образования феррита в чугунах — 723°C.
  2. Цементит — химическое соединение углерода с железом (Fe3C — карбид железа, содержит 6,67% углерода), наиболее твердая и очень хрупкая составляющая структуры чугунов (твердость — 1000 кгс/мм2, удлинение в процессе испытания на растяжение практически не наблюдается), повышает твердость чугуна. Образуется при охлаждении чугунов в соответствии с метастабильной диаграммой состаяния Fe-C (железо-цементит). В зависимости от условий образования различают: первичный цементит — выделяется при затвердевании расплава, вторичный цементит — образуется из аустенита и третичный цементит — возникает вследствие выделения углерода из феррита. При нагреве цементит распадается на аустенит и графит.
  3. Перлит — эвтектоидная смесь феррита и цементита. В условиях, близких к равновесным, образуется в результате эвтектоидного распада аустенита при медленном охлаждении: As→Ф+Fe3C. Распад происходит при постоянной температуре 723°C. В перлите находится 12% цементита, при этом, весь углерод (в объеме 0,8%) сосредоточен в цементите. Различают перлит пластинчатый и зернистый. В пластинчатом перлите феррит и цементит имеют форму пластинок с межпластинчатым расстоянием 0,5-1 мкм. В зернистом перлите округлые зерна цементита на фоне зерен феррита. Структура перлита сильно зависит от скорости охлаждения — чем выше скорость охлаждения, тем она мельче. Тонкодисперсные разновидности перлита — сорбит (межпластинчатое расстояние: 0,2-0,4 мкм, твердость: 230-330 HB) и троостит(межпластинчатое расстояние: ~0,1 мкм, твердость: ~40-45 HRC). Механические свойства перлита зависят от расстояния между пластинками — чем оно меньше, тем выше предел прочности и предел текучести. Твердость перлита составляет порядка 300 кгс/мм2.
  4. Аустенит — твердый раствор углерода и легирующих элементов в γ-железе. Максимальное содержание углерода в аустените 2,03%. В чугунах устойчив при температуре выше 723°C. В Fe-C сплавах высоколегированных Cr, Ni или Mn, аустенит может быть устойчивым при комнатной температуре. Аустенит немагнитен, отличается высокой вязкостью и пластичностью, сравнительно низкой прочностью, высокой плотностью, по сравнению с другими структурными составляющими железоуглеродистых сплавов.
  5. Ледебурит — эвтектическая смесь цементита и аустенита. Содержит 4,3% углерода.  Образуется при температуре 1145°C. При температуре ниже эвтектоидной (723°C) аустенит превращается в перлит и, таким образом, при комнатной температуре ледебурит состоит из цементита и перлита.

Различное сочетание структурных составляющих придает серому чугуну широкую гамму разносторонних физико-механических свойств. Структура и свойства чугуна с пластинчатым графитом в значительной мере определяются процессом графитизации, на который оказывают влияние присутствующие в чугуне элементы. По степени интенсивности воздействия на процесс графитизации элементы выстраиваются в следующий ряд:

Si, Al, C, Ti, Ni, Cu, P, Zr | Nb | W, Mn, Cr, V, S, Mg, Ce, Te, B

Элементы, способствующие графитизации чугуна и образованию феррита, распологаются слева от Nb, а справа от Nb элементы, способствующие образованию карбидов и перлита.

Влияние химических элементов на свойства серого чугуна:

  1. C — в наибольшей степени способствует графитизации чугуна, понижает прочность, повышает пластичность, улучшает литейные свойства.
  2. Si — способствует графитизации, укрупняет включения графита, повышает механические свойства (при содержании >3% понижает пластичность), улучшает литейные свойства.
  3. Mn — обессеривает и раскисляет чугун; тормозит процесс графитизации; повышает склонность к отбелу, дисперсность перлита, механические свойства (при содержании от 0,7 до 1,3%, а при дальнейшем повышении содержания — снижает), увеличивает усадку.
  4. Sвредная примесь: образует с железом легкоплавкую эвтектику с температурой плавления 985°C, которая размещаясь на границах кристаллов, приводит к снижению механических свойств чугуна, его жидкотекучести, повышению усадки, придает чугуну «красноломкость» (образование трещин при высоких температурах).
  5. Pвредная примесь: повышает жидкотекучесть и хрупкость (для машиностроительных отливок содержание ограничивают 0,2%, в художественном литье, где на первом месте стоит жидкотекучесть, а не прочность, содержание фосфора может достигать 0,8-1,0%).
  6. Ni — легирующий элемент: выравнивает механические свойства в отливках со стенками различной толщины, повышает твердость, коррозионную стойкость и обрабатываемость резанием.
  7. Cu — способствует графитизации, увеличивает жидкотекучесть, повышает прочность и твердость..
  8. Cr — тормозит процесс графитизации, измельчает графит, повышает дисперсность перлита, прочность, твердость, понижает пластичность и литейные свойства.
  9. Ti — способствует графитизации (при содержании до 0,05%), при большем содержании тормозит этот процесс, повышает механические свойства.
  10. Mg — способствует графитизации (при содержании до 0,01%), при большем содержании увеличивает отбел, является сильным десульфуратором.
  11. Mo — легирующий элемент: замедляет графитизацию, способствует карбидообразованию, повышает твердость (без ухудшения обрабатываемости), сопротивление износу.

Стандарты

Технические характеристики серого чугуна для изготовления отливок, в Украине регламентируется ГОСТ 1412-85 «Чугун с пластинчатым графитом для отливок. Марки».

Маркировка

Чугун с пластинчатым графитом маркируют буквами СЧ (начальные буквы слов «серый чугун»), за которыми следуют две цифры, отображающие предел прочности при растяжении σB (в кгс/мм2). К примеру, маркировка СЧ20 означает — серый чугун с пластинчатым графитом с пределом прочности на растяжение не ниже — 20 кг/мм2.

Классификация чугуна с пластинчатым графитом

В зависимости от микроструктуры металлической матрицы серый чугун с пластинчатым графитом подразделяют на:

  1. Ферритный чугун (рис. 2а)
  2. Феррито-перлитный чугун (рис. 2б)
  3. Перлитный чугун (рис. 2в)
Схемы структур серого чугуна х 300

Рис. 2: Схемы структур серого чугуна х 300 [8]: а — ферритная, б — феррито-перлитная, в — перлитная

Механические свойства

Механические свойства материала отливок из серого чугуна с пластинчатым графитом должны удовлетворять требованиям ГОСТ 1412-85, приведенным в табл. 1.

Таблица 1: Механические свойства серого чугуна по ГОСТ 1412-85

Марка Марка чугуна по СТ СЭВ 4560-84 Временное сопротивление при растяжении σВ, МПа, (кгс/мм2), не менее
СЧ10 31110 100 (10)
СЧ15 31115 150 (15)
СЧ18 180 (18)
СЧ20 31120 200 (20)
СЧ21 210 (21)
СЧ24 240 (24)
СЧ25 31125 250 (25)
СЧ30 31130 300 (30)
СЧ35 31135 350 (35)

Примечание: Допускается превышение минимального значения σВ не более чем на 100 МПа, если в нормативно-технической документации на отливки нет других ограничений. Временное сопротивление при растяжении чугуна марки СЧ10 определяется по требованию потребителя.

Структура чугуна зависит от толщины стенок чугунных отливок. В зависимости от толщины стенки отливки, чугун кристаллизуется и охлаждается с различной скоростью (чем толще стенка отливки, тем ниже скорость охлаждения и тем больше выделяется графита в структуре чугуна и тем ниже прочностные характеристики материала отливки). Зависимость прочностных характеристик чугуна от толщины стенок отливок приведена в табл. 2.

Таблица 2: Ориентировочные данные о временном сопротивлении при растяжении и твердости в стенках отливок различного сечения по ГОСТ 1412-85

Марка чугуна Толщина стенки отливки, мм
4 8 15 30 50 80 150
Временное сопротивление при растяжении, МПа, не менее
СЧ10 140 120 100 80 75 70 65
СЧ15 220 180 150 110 105 90 80
СЧ20 270 220 200 160 140 130 120
СЧ25 310 270 250 210 180 165 150
СЧ30 330 300 260 220 195 180
СЧ35 380 350 310 260 225 205
Твердость НВ, не более
СЧ10 205 200 190 185 156 149 120
СЧ15 241 224 210 201 163 156 130
СЧ20 255 240 230 216 170 163 143
СЧ25 260 255 245 238 187 170 156
СЧ30 270 260 250 197 187 163
СЧ35 290 275 270 229 201 179

Примечания:

  1. Значения временного сопротивления при растяжении и твердости в реальных отливках могут отличаться от приведенных в таблице.
  2. Значения временного сопротивления при растяжении и твердости в стенке отливки толщиной 15 мм приблизительно соответствуют аналогичным значениям в стандартной заготовке диаметром 30 мм.

Химический состав

Рекомендуемый химический состав серого чугуна для отливок согласно ГОСТ 1412-85, приведен в табл. 3.

Таблица 3: Химический состав серого чугуна по ГОСТ 1412-85

Марка Массовая доля элементов, %
Основные компоненты Примеси, не более
C Si Mn P S
СЧ10 3,5-3,7 2,2-2,6 0,5-0,8 0,3 0,15
СЧ15 3,5-3,7 2,0-2,4 0,5-0,8 0,2 0,15
СЧ20 3,3-3,5 1,4-2,4 0,7-1,0 0,2 0,15
СЧ25 3,2-3,4 1,4-2,2 0,7-1,0 0,2 0,15
СЧ30 3,0-3,2 1,3-1,9 0,7-1,0 0,2 0,12
СЧ35 2,9-3,0 1,2-1,5 0,7-1,1 0,2 0,12

Примечание: Допускается низкое легирование чугуна различными элементами (Cr, Ni, Cu, P и др.)

Физические свойства

Справочные данные о физических свойствах серого чугуна с пластинчатым графитом по ГОСТ 1412-85, в зависимости от марки чугуна, приведены в табл. 4. 

Таблица 4: Физические свойства чугуна с пластинчатым графитом

Наименование параметра Величина параметра для марки
СЧ10 СЧ15 СЧ20 СЧ25 СЧ30 СЧ35
Плотность ρ, кг/м3 6,8·103 7,0·103 7,1·103 7,2·103 7,3·103 7,4·103
Линейная усадка ε, % 1,0 1,1 1,2 1,2 1,3 1,3
Модуль упругости при растяжении, Е·10-2 МПа 700-1100 700-1100 850-1100 900-1100 1200-1450 1300-1450
Удельная теплоемкость при температуре от 20 до 200°С, С, Дж (кг·К) 460 460 480 500 525 545
Коэф. линейного расширения при температуре от 20 до 200°С, α 1/°С 8,0·10-6 9,0·10-6 9,5·10-6 10,0·10-6 10,5·10-6 11,0·10-6
Теплопроводность при 20°С, λ, Вт(м·К) 60 59 54 50 46 42

Производители литья из серого чугуна

Литература

  1. Механические и технологические свойства металлов. Справочник. Бобылев А.В. М., «Металлургия», 1980. 296 с.
  2. Воздвиженский В.М. и др. Литейные сплавы и технология их плавки в машиностроении. — М.: Машиностроение, 1984. — 432 с., ил
  3. Могилев В.К., Лев О.И. Справочник литейщика. М. Машиностроение, 1988. — 272 с.: ил.
  4. Энциклопедия неорганических материалов. В двух томах. К.: Высшая школа, 1977.
  5. ГОСТ 1412-85 «Чугун с пластинчатым графитом для отливок. Марки».
  6. Колачев Б.Ф., Ливанов В.А., Елагин В.И. Металловедение и термическая обработка цветных металлов и сплавов Изд. 2-е, испр. и доп. М.: Металлургия, 1981. 416 с.
  7. Справочник по чугунному литью./Под ред. д-ра техн. наук Н.Г. Гиршовича.- Л.: Машиностроение. Ленингр. отд-ние, 1978.- 758 с., ил
  8. Липницкий А.М. Справочная книга рабочего-литейщика. Л.: Лениздат, 1980.- 240 с., ил.

Статьи по теме